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Abstract  

Zeeman (1964) has shown that the group of automorphisms for the relation of causality 
on Minkowski space is that generated by the orthochronous Poincar6 (Halpern, 1968) 
group and dilatations. Here we prove that the group of automorphisms that preserve 
the time-like vectors of Minkowski space normwise is the complete Poincar6 group. 
We prove that the timelike structure within the null cone of a single event does define 
the whole structure of Minkowski space. Further, it is shown that only inertial observers 
can use Minkowski space to describe space-time. 

Introduction 

Let  M denote  Minkowsk i  space, tha t  is R 4 with pseudo  n o r m  

[lY - xll z = e{(yo - Xo) z - ( y l  - Xl) 2 - -  (Yz - x2) z - (Y3 - x3) 2} 

and  Eucl idean  topology .  A n  event  y is said to be in the future  o f  an event x 
i f  the vector  y - x is t imel ike;  tha t  is, i f  el[y - x[I z > 0, wi th  Xo < Yo. This  
re la t ion  is wri t ten  x < y. I f  f is an injective mapp ing  o f  M into i tself  i t  is 
sa id  to  be a causal  a u t o m o r p h i s m  i f f  and  f - ~  preserve this re la t ion o f  
causa l i ty  

x < y . ~ f x  < f y  for  al l  such x, y ~ M 

The causal  au tomorph i sms  fo rm a group  cal led the causal i ty  group.  
Z e e m a n  has shown tha t  the causal i ty  g roup  is generated by  the o r tho-  
ch ronous  Poincar6  g roup  and  di la ta t ions .  

Here  we s tudy the group  o f  au tomorph i sms  G o f  M tha t  preserve the  
no rms  o f  t imel ike  vectors,  mak ing  no assumpt ions  a b o u t  l inear i ty  or  
cont inui ty ,  f i s  an e lement  o f  this g roup  i f  i t  is injective and  such tha t  

e[]y - xl[ 2 = e'[lfy - f x l ]  z for  x, y ~ M 

such tha t  ellY - x[t z > 0. The  comple te  Poincar6 group  will  o f  course be a 
subgroup  o f  G. This  invest igat ion shows tha t  G is in fact  the comple te  
Poincar6  group.  Hence  preserving the norms  o f  t imel ike  vectors  au to-  
mat ica l ly  preserves al l  norms.  
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Our  investigation differs f rom Zeeman ' s  in that  we do demand  preserva-  
t ion o f  t imefike norms  but  relax his demand  o f  global  causality. The  
techniques used here involve the ' inverse triangle inequali ty '  p roper ty  o f  
the Minkowski  metric,  and it m a y  be possible to generalize the results to 
some curved space-times. The  Minkowski  metric in effect defines two such 
inequalities, one on triangles composed  o f  t imelike lines and one made  
up o f  spacelike lines. 

L e m m a  1. Fo r  x,  y ,  z e M ,  elly - xll e > 0, dllz - x[[ 2 > 0, then z ~ x y  
( that  is, z lies on the line x y  between x and y) i f  and only if [[y - xll = 
[[z - xl[ + lly - zll. 

Proo f  This result is the basis o f  the clock pa radox  discussion in special 
relativity. I f  z lies on xy,  in the future  o f  one event and in the past  o f  the 
other,  then we know that  [[y - xll = tlz - xll + I[Y - zll. Otherwise [[Y - xll > 
I I z -  xll + Ily - zll. This latter case accounts  for  the difference in the ages o f  
twins start ing at  x on being reunited at  y, one having taken  the inertial 
pa th  x y  and the other  the non-inert ial  pa th  xzy .  

Theorem 1. f t r a n s f o r m s  t imelike lines into t imelike lines. 

Proof. Let x, y ~ M,  8lly - x[[ 2 > 0 and z ~ xy.  

IIY - xll = I[z - xll + lly - z[[ = Ilfz - f x [ [  + Ilfy - f z l l  

But ]IY - xll = Ilfy - f x [ l .  Therefore ,  

IITY - f x l l  = l i fe  - f x l l  + IITY - f e l l  

By the previous l e m m a , f z  ~ f x f y ,  t h u s f ( x y )  is a straight line. Its t ime- 
like nature  follows f rom the definition o f f  

Theorem 2. f i s  a h o m e o m o r p h i s m  o f  M. 

Proof. f i s  injective. Let  

U =  {y: O < e l l y -  xllZ < r, x,  y ~  M ,  r ~ R} 

be a subbasic open ne ighbourhood  for  a topo logy  on M. The  topo logy  
thus generated is the Euclidean topology,  f a n d f  -1 preserve such subbasic 
open sets, 

f U =  {z: 0 < e'llz - f x l l  2 < r, x ,  z e M ,  r e R} 

T h u s f i s  a h o m e o m o r p h i s m  o f  M.  

L e m m a  2. f p r e s e r v e s  or  reverses the causali ty relat ion on a t imelike line. 

Proo f  Let  h be the h o m e o m o r p h i s m  f rom a given t imelike line to the 
t ime axis defined by  hz = Zo, for  z an arbi t rary  element o f  the t imelike line. 
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Then h defines causality on the timelike line, x < y on the line if and only 
if hx < by. Thus h defines a correspondence between the causality relation 
on the line and the inequality relation on the time axis. hfh -1 is a homeo- 
morphism of  the time axis onto itself. It will either preserve or reverse the 
inequality relation on the time axis. The former case corresponds to f 
preserving causality on the given time line, the latter tofreversing causality. 

Theorem 3. f either preserves or reverses causality on all timelike lines. 

Proof We firstly prove this result for two timelike lines passing through 
a common event x. Let Y and Z be two such lines and let y and z be events 
on these lines such that x < y, x < z, y < z. Suppose f preserves causality 
on Z but reverses it on Y, so that f y  <fx,  f x  <fz. It follows from the 
transitivity of  the causality relation tha t fy  <fz. Thus we have 

[lY - xl[ -F ilz - yll < IIz - xll 

I f f z -  fxE[ + Ilfx - fyl l  < l l fz  - fyll  

this latter inequality giving 

Ilz - xl[ + [Ix - yl] < []z - y[[ 

leading to a contradiction. Hencefe i ther  preserves causality on all timelike 
lines passing through a single event, or reverses it. 

Consider two non-intersecting timelike lines. There exists a timelike line 
that intersects both. By transitivity on each pair of  intersecting lines it can 
be seen that f will either preserve causality on both the non-intersecting 
lines or reverse it. At this point we know from Zeeman's work that G is the 
complete Poincar6 group, since this is the subset of  the causality preserving 
or reversing group that preserves timelike norms. However, we derive this 
result using techniques which differ from Zeeman's. 

Theorem 4. fpreserves  null cones. That is, if y is an element of  the null 
cone at x, f y  is an element of the null cone atfx. 

Proof In the Euclidean topology the null cone at x, together with x, 
is the boundary of  the set making up the future and past of x. S incef i s  a 
homeomorphism that preserves this set, it must also preserve its boundary. 

Theorem 5. f t ransforms null lines into null lines. 

Proof Let z E xy, a null line. By the previous theorem, 

[[fy-- fx[[ = Ilfz-- fxll =-[[fz--fy[[-= 0 

Thusfy  andfz  are elements of  the null cone at fx  andfz  is an element of  the 
null cone atfy.  Since the intersection of  the null cones a t f x  a n d f y  is the 
line f x  fy,  f z  must lie on f x  fy. 
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L e m m a  3. Let Y and Z be timelike lines through a common event x. 
I f P  is a timelike line through x, lying in the plane of  Yand Z, t h e n f P  lies 
in the plane o f f  Y a n d f Z .  

Proo f  Let n be an arbitrary element o f f P .  Then f - i n  is an element of  P. 
Hence there exists a timelike line Q t h r o u g h f - ~ n  cutting Y at m and Z 
at r. n lies o n f  Q, which passes throughfm andfr ,  elements o f f  Y a n d f Z  
respectively. Hence n lies in the plane o f f  Y a n d f Z .  T h u s f P  lies in this 
plane. 

Theorem 6. f t ransforms  spacelike lines into spacelike lines. 

P r o o f  Let ~IIY - xl[ z < 0, z ~ x y  and p be an event such that p < x and 
p < y. Then z lies in the p lanepxy  and thus, by the previous lemma,fz ~ plane 
f p f x f y .  Let pl  be a second such event, not an element of  the plane pxy .  
Then f z  ~ p l a n e f p l f x f y  also. Thus fz  lies in the intersection of  these two 
distinct planes, which is the line f x f y .  Thus f maps spacelike lines into 
l i n e s . f x f y  must be spacelike since it cannot be timelike or null. 

Theorem 7. G is the complete Poincar6 group. 

P r o o f  The elements of  G are injective and projective (preserve straight 
lines), thus G must be a group generated by a subgroup of  the full linear 
group on M and the group of  uniform displacements of  the origin. The 
subgroup of  the full linear group that preserves timelike vectors and null 
vectors is the conformal linear group. I f  f is a conformal linear mapping 
then 

elly - xll 2 = ve'llfy - fxll 2 

y a scalar, for every x, y ~ M. But for y - x timelike V = 1. Thus f must 
be a linear isometry. Thus G is the group generated by the group of  linear 
isometries of  M and the group of  uniform displacements. It is thus the 
complete Poincar6 group. 

We now go on to prove that defining the mappingf ins ide  the null cone 
at one event defines it uniquely on M. 

Theorem 8. Let ~ be the interior of  the null cone at x'  ~ M and let 
f :  ~ ~ M such that 

e[ly - x[[ z = ~'HfY - fxl[ z for all y, x ~ 

such that ellY - x][ 2 > 0. T h e n f i s  the restriction to o~ of  a unique element 
of  the complete Poincar6 group. 

P r o o f  It can be shown, as previously, that f transforms line segments 
of  M that lie within ~- into line segments. Thusfpreserves the straight line 
structure within ~-. Let x y  be a line in ~ ' .  It defines a unique line c in M. 
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f ( x y )  defines a unique line c 1 in M. Define F:  M -+ M such that Fc = d .  
This defines F uniquely on M, since every element of M lies on two distinct 
lines that intersect ~ .  The restriction of  F to ~ is f Suppose m is a line 
in M that does not intersect ~-;. It is always possible to find two planes that 
intersect in m, these planes both intersecting ~' .  F preserves these planes 
hence F preserves the linearity of  m. Thus F is projective. It must thus be 
an element of the group generated by the full linear group and the group of  
uniform displacements. It is thus continuous. F must thus map the null 
cone at an arbitrary point y into the null cone at Fy. Therefore F is con- 
formal. Since F preserves the norms of timelike vectors at x'  the conformal 
factor must be unity, proving that F is an isometry and thus an element of  
the complete Poincar6 group. 

General Discussion 

f i s  an element of  the complete Poincar6 group if and only if the following 
diagram is commutative. 

SxY 
M x M  > M x M  

"llllZ~ ~ IEz 
R 

Here we have seen that defining f i n  such a manner that it is commutative 
on the subset 

{(x, y): x, y e M, x fixed, y such that e[lY - xll'>0} 
of  M x M makes it commutative everywhere. 

This result leads one to speculate about similar results for a positive 
definite metric on R". If  f is an isometry on R" then it is an element of  the 
group generated by the full linear group and group of  uniform displace- 
ments. However, i f f  is an injective mapping on R" which preserves the 
metric only on certain subsets, it need not  be an isometry. What interesting 
classes of  subsets need f preserve the metric on for it to be an isometry ? 

We now prove that if we define f to be a homeomorphism on M and 
norm preserving on null cones it is in fact an element of  the group generated 
by the complete Poincar6 group and dilatations. We show thatfpreserves  
or reverses causality on all null lines. Firstly, sincefpreserves null cones it 
transforms null lines into null lines (Theorem 5). Further, it preserves or 
reverses causality on a single null line, since it is a homeomorphism. We 
now show that it preserves or reverses causality on null lines that intersect. 
Let xy  and xz  be such lines with x <- y and x <- z; that is, x causally preced- 
ing both y and z. (We use <. for lightlike causality.) Suppose f does not 
preserve causality; letfx <" f y  butfz  <. f x .  The null cones at y and z intersect 
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in disjoint sets U and V, the elements of U being in the future null cones of 
y and z while those of V are in their past null cones; x ~ V. However, the 
null cones o f f z  and fy  intersect in the connected set f ( U  U V) which is 
on the past null cone o fy  but the future null cone ofz. Sincefis a homeo- 
morphism it preserves the topological property of connectedness, leading 
to a contradiction. Thus f must preserve or reverse causality on both xy 
and xz; causality is preserved or reversed on null lines that intersect. By 
transitivity we again see that f must preserve or reverse causality on all 
null lines. Thus, from Zeeman's work we see that f is an element of the 
group generated by the complete Poincar6 group and dilatations. Con- 
versely, every element of this group is a homeomorphism and does preserve 
null norms. It is conjectured that the conditions may be weakened by 
replacing the homeomorphism requirement by just an injective requirement. 

Physically, of course, preserving null norms corresponds to preserving 
the velocity of light, and this is a discussion of transformations on Minkow- 
ski space that preserve the magnitude of the velocity of light. To derive 
the Poincar6 group in special relativity one usually uses the principle of 
relativity (all laws of nature are identical in all inertial systems of reference) 
to show that invariance of null infinitesimals leads to the invariance of 
magnitude of all infinitesimals (see, for example, Landau & Lifshitz, 1951). 
This invariance soon leads to the Poincar6 group (see, for example, Synge, 
1956). (Assuming that all observers use the same scale makes the conformal 
factor unity.) Our result implies that one need not use the principle of 
relativity, the Poincar6 group follows from the invariance of the velocity 
of light. The homeomorphic requirement presents no real limitation on the 
physical interpretation of the result, as any such f would correspond to a 
coordinate transformation relating the Minkowski space representation 
of two distinct observers and any function on or into M that would appear 
continuous to the one observer would have to do so for the other observer. 
Thus let O and O' be distinct observers, O being an inertial observer, both 
using Minkowski coordinates. Then, if and only if O' can describe the paths 
of photons in his Minkowski coordinate system by null lines and the two 
coordinate systems are homeomorphically related, is O' himself an inertial 
observer. 

We have seen that, mathematically, the group that preserves timelike 
norms is a proper subgroup of that group that homeomorphically preserves 
null norms. There is no type of triangle inequality that has to be preserved 
in preserving null norms, whereas there is when timelike norms are preserved. 
The property of the metric that is preserved for the null norms is more akin 
to its semimetric part (Blumenthal, 1953). (It is the triangle inequality part 
of the metric that limits the metric function, in that the number assigned 
to one pair of points is related to that assigned to other pairs.) 

There is no analog of Theorem 8 for homeomorphisms that preserve 
null norms. Defining f to be null cone preserving at one event does not 
define a unique element of the causality preserving or reversing group. Let 
N be the null cone at x, M the null cone at y, f a n  injective mapping of 
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N -+ M with f x  = y. Then f can homeomorphical ly  expand one null line 
and contract  another,  f does define a subclass o f  the causality-preserving 
or reversing group,  each element o f  which maps N -+ M and x -+ y. I f  L 
is an arbitrary Lorentz  t ransformation,  E an arbitrary dilatation and D 
the uniform displacement operator  that  maps x --~ y, then DEL, the com- 
posite mapping,  is an element o f  this class, and every element o f  the 
causality-preserving or reversing group that  preserves N thus is o f  this type. 
However,  f n e e d  no t  be the restriction o f  such a mapping to N. 
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